Facile and Rapid Synthesis of 3,4-Dihydropyrimidin-2(1H)-one Derivatives Using [Et3NH][HSO4] as Environmentally Benign and Green Catalyst

نویسندگان

  • Behjat Pouramiri Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169, I.R. IRAN
  • Raziye Fayazi Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169, I.R. IRAN
چکیده مقاله:

5-acetyl-6-methyl-4-aryl-3,4-dihydropyrimidin-2(1H)-ones were synthesized in good to excellent by one-pot three-component Biginelli condensation in the presence of ammonium salt [Et3NH][HSO4] as an inexpensive and green catalyst under solvent-free conditions. High yields, short reaction time, easy work-up, a green environment which requires no toxic organic solvents and reusability of the catalyst are the advantages of this procedure. A broad range of structurally diverse aldehydes (aromatic aldehydes bearing electron withdrawing and electron releasing groups) was applied successfully, and corresponding products were obtained in good to excellent yields without any by-product. In addition, this catalyst was stable during the reaction process and could also be reused several times with consistent activity.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Al2 (SO4)3.18H2O as an Efficient and Environmentally Benign Natural Catalyst for Facile and Solvent-free Synthesis of Xanthene Derivatives

An environmentally friendly, facile and solvent-free synthetic route for aluminum sulfate octadecahydrate (Al2(SO4)3.18H2O) catalyzed one-pot multi-component synthesis of 12-aryltetrahydrobenzo[α]xanthene-11-ones, 1,8-dioxo-octahydroxanthenes and 14-aryl-14Hdibenzo[α,j]xanthenes has been developed. The readily, easy to handle, non-toxic, environmental friendly and low-cost catalyst, easily sepa...

متن کامل

Fe2O3 as an Environmentally Benign Natural Catalyst for One-Pot and Solvent-Free Synthesis of Spiro-4H-Pyran Derivatives

In this work, a simple and economical procedure for the synthesis of spiro-4H-pyranderivatives has been found through the three-component, one-pot condensation of isatin/acenaphthequinone, malononitrile and different reagents including 1, 3-dicrbonyl compounds, naphthol and 4-hydroxycumarin under thermal and solvent-free conditions in the presence ofFe2O<su...

متن کامل

synthesis of amido alkylnaphthols using nano-magnetic particles and surfactants

we used dbsa and nano-magnetic for the synthesis of amido alkylnaphtols.

15 صفحه اول

Employing a hydrophobic-bentonite as a highly efficient and versatile catalyst for a green one-pot and rapid synthesis of 4H-benzo-[b]-pyran derivatives

A hydrophobic-bentonite catalyst (cetyltrimethyl ammonium bromide-bentonite) has been used as a very mild, neutral, eco-friendly, reusable, non-toxic, low-cost and easily available catalyst. It was prepared by replacing the exchangeable Na+ cations of a homoionic Na–bentonite with cetyltrimethyl ammonium bromide (CTMAB) cations. The catalyst was characterized by XRD, BET and SEM. The...

متن کامل

Employing a hydrophobic-bentonite as a highly efficient and versatile catalyst for a green one-pot and rapid synthesis of 4H-benzo-[b]-pyran derivatives

A hydrophobic-bentonite catalyst (cetyltrimethyl ammonium bromide-bentonite) has been used as a very mild, neutral, eco-friendly, reusable, non-toxic, low-cost and easily available catalyst. It was prepared by replacing the exchangeable Na+ cations of a homoionic Na–bentonite with cetyltrimethyl ammonium bromide (CTMAB) cations. The catalyst was characterized by XRD, BET and SEM. The...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 37  شماره 1

صفحات  159- 167

تاریخ انتشار 2018-02-01

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023